Unit 2.4a Using Programs with Data, SQLAlchemy
Using Programs with Data is focused on SQL and database actions. Part A focuses on SQLAlchemy and an OOP programming style,
Database and SQLAlchemy
In this blog we will explore using programs with data, focused on Databases. We will use SQLite Database to learn more about using Programs with Data. Use Debugging through these examples to examine Objects created in Code.
-
College Board talks about ideas like
- Program Usage. "iterative and interactive way when processing information"
- Managing Data. "classifying data are part of the process in using programs", "data files in a Table"
- Insight "insight and knowledge can be obtained from ... digitally represented information"
- Filter systems. 'tools for finding information and recognizing patterns"
- Application. "the preserve has two databases", "an employee wants to count the number of book"
-
PBL, Databases, Iterative/OOP
- Iterative. Refers to a sequence of instructions or code being repeated until a specific end result is achieved
- OOP. A computer programming model that organizes software design around data, or objects, rather than functions and logic
- SQL. Structured Query Language, abbreviated as SQL, is a language used in programming, managing, and structuring data
Imports and Flask Objects
Defines and key object creations
- Comment on where you have observed these working? Provide a defintion of purpose.
- Flask app object
- SQLAlchemy db object
- the app part has various different objects that are useful in making blueprints
- Flask is a class and a template
- Code makes a db file
"""
These imports define the key objects
"""
from flask import Flask
from flask_sqlalchemy import SQLAlchemy
"""
These object and definitions are used throughout the Jupyter Notebook.
"""
# Setup of key Flask object (app)
app = Flask(__name__)
# Setup SQLAlchemy object and properties for the database (db)
database = 'sqlite:///files/sqlite.db' # path and filename of database
app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False
app.config['SQLALCHEMY_DATABASE_URI'] = database
app.config['SECRET_KEY'] = 'SECRET_KEY'
db = SQLAlchemy()
# This belongs in place where it runs once per project
db.init_app(app)
Model Definition
Define columns, initialization, and CRUD methods for users table in sqlite.db
-
Comment on these items in the class, purpose and defintion.
- class User
- db.Model inheritance
- init method
-
@property
,@<column>.setter
- create, read, update, delete methods
-
class User defines the template for Users, we are using this template to create objects of type user.
- db.Model is inheritance, we are using this to make our class be able to inherit the database properties and objects
- We are able to use the methods to add to our template database information
- Getters enable us to retrieve the values out of the objects
- Setters enables us to change the attributes
""" database dependencies to support sqlite examples """
import datetime
from datetime import datetime
import json
from sqlalchemy.exc import IntegrityError
from werkzeug.security import generate_password_hash, check_password_hash
''' Tutorial: https://www.sqlalchemy.org/library.html#tutorials, try to get into a Python shell and follow along '''
# Define the User class to manage actions in the 'users' table
# -- Object Relational Mapping (ORM) is the key concept of SQLAlchemy
# -- a.) db.Model is like an inner layer of the onion in ORM
# -- b.) User represents data we want to store, something that is built on db.Model
# -- c.) SQLAlchemy ORM is layer on top of SQLAlchemy Core, then SQLAlchemy engine, SQL
class User(db.Model):
__tablename__ = 'users' # table name is plural, class name is singular
# Define the User schema with "vars" from object
id = db.Column(db.Integer, primary_key=True)
_name = db.Column(db.String(255), unique=False, nullable=False)
_uid = db.Column(db.String(255), unique=True, nullable=False)
_password = db.Column(db.String(255), unique=False, nullable=False)
_dob = db.Column(db.Date)
# constructor of a User object, initializes the instance variables within object (self)
def __init__(self, name, uid, password="123qwerty", dob=datetime.today()):
self._name = name # variables with self prefix become part of the object,
self._uid = uid
self.set_password(password)
if isinstance(dob, str): # not a date type
dob = date=datetime.today()
self._dob = dob
# a name getter method, extracts name from object
@property
def name(self):
return self._name
# a setter function, allows name to be updated after initial object creation
@name.setter
def name(self, name):
self._name = name
# a getter method, extracts uid from object
@property
def uid(self):
return self._uid
# a setter function, allows uid to be updated after initial object creation
@uid.setter
def uid(self, uid):
self._uid = uid
# check if uid parameter matches user id in object, return boolean
def is_uid(self, uid):
return self._uid == uid
@property
def password(self):
return self._password[0:10] + "..." # because of security only show 1st characters
# update password, this is conventional method used for setter
def set_password(self, password):
"""Create a hashed password."""
self._password = generate_password_hash(password, method='sha256')
# check password parameter against stored/encrypted password
def is_password(self, password):
"""Check against hashed password."""
result = check_password_hash(self._password, password)
return result
# dob property is returned as string, a string represents date outside object
@property
def dob(self):
dob_string = self._dob.strftime('%m-%d-%Y')
return dob_string
# dob setter, verifies date type before it is set or default to today
@dob.setter
def dob(self, dob):
if isinstance(dob, str): # not a date type
dob = date=datetime.today()
self._dob = dob
# age is calculated field, age is returned according to date of birth
@property
def age(self):
today = datetime.today()
return today.year - self._dob.year - ((today.month, today.day) < (self._dob.month, self._dob.day))
# output content using str(object) is in human readable form
# output content using json dumps, this is ready for API response
def __str__(self):
return json.dumps(self.read())
# CRUD create/add a new record to the table
# returns self or None on error
def create(self):
try:
# creates a person object from User(db.Model) class, passes initializers
db.session.add(self) # add prepares to persist person object to Users table
db.session.commit() # SqlAlchemy "unit of work pattern" requires a manual commit
return self
except IntegrityError:
db.session.remove()
return None
# CRUD read converts self to dictionary
# returns dictionary
def read(self):
return {
"id": self.id,
"name": self.name,
"uid": self.uid,
"dob": self.dob,
"age": self.age,
}
# CRUD update: updates user name, password, phone
# returns self
def update(self, name="", uid="", password=""):
"""only updates values with length"""
if len(name) > 0:
self.name = name
if len(uid) > 0:
self.uid = uid
if len(password) > 0:
self.set_password(password)
db.session.commit()
return self
# CRUD delete: remove self
# None
def delete(self):
db.session.delete(self)
db.session.commit()
return None
Initial Data
Uses SQLALchemy db.create_all() to initialize rows into sqlite.db
-
Comment on how these work?
- Create All Tables from db Object
- User Object Constructors
- Try / Except
-
This code creates data into a new table
- db.create_all() is a SQLAlchemy method that creates all the tables defined in the models by examining the attributes of each model.
- The User object constructors define the attributes of a user object, such as id, name, uid, password, and dob. The constructor takes these attributes as arguments and initializes them for a new user object.
- The try/except block is used for exception handling. In this code, it attempts to create a new user object by calling the create() method on the user object. If an exception occurs during the creation process, such as an object already existing in the database with the same primary key value, the code prints an error message to the console.
"""Database Creation and Testing """
# Builds working data for testing
def initUsers():
with app.app_context():
"""Create database and tables"""
db.create_all()
"""Tester data for table"""
u1 = User(name='Thomas Edison', uid='toby', password='123toby', dob=datetime(1847, 2, 11))
u2 = User(name='Nikola Tesla', uid='niko', password='123niko')
u3 = User(name='Alexander Graham Bell', uid='lex', password='123lex')
u4 = User(name='Eli Whitney', uid='whit', password='123whit')
u5 = User(name='Indiana Jones', uid='indi', dob=datetime(1920, 10, 21))
u6 = User(name='Marion Ravenwood', uid='raven', dob=datetime(1921, 10, 21))
users = [u1, u2, u3, u4, u5, u6]
"""Builds sample user/note(s) data"""
for user in users:
try:
'''add user to table'''
object = user.create()
print(f"Created new uid {object.uid}")
except: # error raised if object nit created
'''fails with bad or duplicate data'''
print(f"Records exist uid {user.uid}, or error.")
initUsers()
Output should show:
Created new uid toby Created new uid niko Created new uid lex Created new uid whit Created new uid indi Created new uid raven
Check for given Credentials in users table in sqlite.db
Use of ORM Query object and custom methods to identify user to credentials uid and password
-
Comment on purpose of following
- User.query.filter_by
- user.password
-
This code is used to search for a row in the database
- User.query.filter_by(_uid=uid) is used to query the User table and return the first user record that has the _uid attribute equal to uid. The _uid attribute is a custom attribute defined in the User model.
- user.password is used to access the password attribute of a User object. The password attribute is defined in the User model and stores the password of a user. This code uses it to verify if the password entered matches the password stored in the user object.
def find_by_uid(uid):
with app.app_context():
user = User.query.filter_by(_uid=uid).first()
return user # returns user object
# Check credentials by finding user and verify password
def check_credentials(uid, password):
# query email and return user record
user = find_by_uid(uid)
if user == None:
return False
if (user.is_password(password)):
return True
return False
check_credentials("indi", "123qwerty")
Boolean output, should show "True" or "False"
Create a new User in table in Sqlite.db
Uses SQLALchemy and custom user.create() method to add row.
-
Comment on purpose of following
- user.find_by_uid() and try/except
- user = User(...)
- user.dob and try/except
- user.create() and try/except
-
This code is used to create a row in the database
- user.find_by_uid() is a function that queries the database for a user with a specified UID (user ID). The try/except block is used to catch any exceptions that may occur if the specified UID is not found in the database or if there is an error with the query.
- user = User(...) initializes a new instance of the User class with the provided parameters.
- user.dob retrieves the date of birth attribute of the user object. The try/except block is used to catch any exceptions that may occur if the date of birth entered by the user is not in the correct format (YYYY-MM-DD).
- user.create() is a function that writes the user object to the database. The try/except block is used to catch any exceptions that may occur if the object is not created successfully.
def create():
# optimize user time to see if uid exists
uid = input("Enter your user id:")
user = find_by_uid(uid)
try:
print("Found\n", user.read())
return
except:
pass # keep going
# request value that ensure creating valid object
name = input("Enter your name:")
password = input("Enter your password")
# Initialize User object before date
user = User(name=name,
uid=uid,
password=password
)
# create user.dob, fail with today as dob
dob = input("Enter your date of birth 'YYYY-MM-DD'")
try:
user.dob = datetime.strptime(dob, '%Y-%m-%d').date()
except ValueError:
user.dob = datetime.today()
print(f"Invalid date {dob} require YYYY-mm-dd, date defaulted to {user.dob}")
# write object to database
with app.app_context():
try:
object = user.create()
print("Created\n", object.read())
except: # error raised if object not created
print("Unknown error uid {uid}")
create()
Output should show: Created {'name':'(whatever user inputted for name', 'password':'(whatever user inputted for password'}
Reading users table in sqlite.db
Uses SQLALchemy query.all method to read data
-
Comment on purpose of following
- User.query.all
- json_ready assignment, google List Comprehension
-
This code returns all the rows
- User.query.all() is a SQLAlchemy method used to extract all the rows (or instances) of the User model from the database. It returns a list of User objects that correspond to the rows in the database.
- json_ready is a variable that will store a list of dictionaries, where each dictionary represents a User object in a JSON-ready format. This is achieved through list comprehension, where the user.read() method is applied to each User object in the table list returned by User.query.all(). The json_ready list is then returned by the read() function.
# SQLAlchemy extracts all users from database, turns each user into JSON
def read():
with app.app_context():
table = User.query.all()
json_ready = [user.read() for user in table] # "List Comprehensions", for each user add user.read() to list
return json_ready
read()
Output should print the table with all the instances